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Unit 5 – Combinational Circuits 
 

BASIC CIRCUITS 
 

MULTIPLEXERS (MUXS) 
▪ This logic circuit selects one of many input signals and forwards the selected input to the output line.  
▪ Boolean equations for MUX2-to-1, MUX4-to-1, MUX8-to-1: 

 
 
 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 

 
 

▪ Normally, a multiplexer has 𝑁 = 2𝑛 inputs, one output, and a selector with 𝑛 bits. 

 
▪ But, if a multiplexer has 𝑁 inputs, where 𝑁 is not a power of 2, the number of bits of the 

selector is given by: ⌈𝑙𝑜𝑔2𝑁⌉. 
 
 

 
 
 
 
MULTIPLEXERS WITH ENABLE 
▪ An enable input provides us with an extra level of control. If the multiplexer is enabled, the circuit just works. If the 

multiplexer is not enabled, no input is allowed into the output, and the multiplexer output becomes ‘0’ (if the output is active-
high) or ‘1’ (if the output if active-low). 

▪ The enable input can be either active-high or active-low: 
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BUS MULTIPLEXERS 
 

▪ Usually we want input signals to contain more than one bit.  
 
▪ In the figure, each input signal contains ‘m’ bits. 
 
▪ This ‘bus multiplexer’ can be built by ‘m’ multiplexers, each  

taking care of only one bit for all the inputs.  
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
▪ We have ‘N’ inputs and therefore the selector has 

𝑛 = ⌈𝑙𝑜𝑔2𝑁⌉ bits. 

▪ Note that the selector is the same for all the multiplexers. 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
LOGIC CIRCUITS WITH MUXs 
▪ Multiplexers can be used to implement Boolean Functions. The selector can be thought as the input variables, the input bits 

are fixed values that are passed onto the output according to the selector. 
▪ This multiplexor with fixed inputs implements a logic function. The functionality of this circuit is similar to that of a Look-Up 

Table (LUT), which is a ROM-like circuit whose values are obtained by addressing them. FPGAs implement Boolean functions 
using LUTs. In the example, a 3-to-1 LUT is an LUT with 3 inputs, i.e., it contains 23 = 8 addresses. 
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▪ Note that for a 𝑛-variable function, we need a MUX 2𝑛-to-1 with fixed inputs. 

 
▪ However, it is possible to use a MUX 2𝑛−1-to-1. This might require extra NOT gates and non-fixed inputs. 

✓ 𝐹(𝑥, 𝑦, 𝑧) = ∑(𝑚0, 𝑚2, 𝑚4, 𝑚6, 𝑚7). 
 
 
 
 
 
 
 
 
 
 
 
 

✓ 𝐹(𝑥, 𝑦, 𝑧) = ∑(𝑚0, 𝑚1, 𝑚3, 𝑚5,𝑚7). 
 

 
 
 
 
 
 
 
 
 
 
 

✓ 𝐹(𝑥, 𝑦) = ∑(𝑚0, 𝑚1, 𝑚2) 
 
 
 
 

 
 
 
 
 
This process of using multiplexors to implement functions can be performed in a systematic fashion using Shannon’s 
expansion theorem. As we will see later for LUTs, this has an important application in the implementation of Boolean 
functions on FPGAs.  
 
 

Example: 
▪ Implement a MUX 4-to-1 using MUXes 2to-1. 
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SHANNON’S EXPANSION 
 

▪ This is useful to express a Boolean function in terms of multiplexers 
▪ An 𝑛-variable Boolean function can be decomposed into two (𝑛 − 1)-variable Boolean functions: 

 
𝑓(𝑥1, 𝑥2, … , 𝑥𝑛) = 𝑥1   𝑓(0, 𝑥2, … , 𝑥𝑛) + 𝑥1𝑓(1, 𝑥2, … , 𝑥𝑛) 

 
▪ In the equation, we use the variable 𝑥1 to decompose, but we can use any variable 𝑥𝑖 , 𝑖 = 1: 𝑛. For example, using 𝑥𝑛: 

𝑓(𝑥1, 𝑥2, … , 𝑥𝑛) = 𝑥𝑛   𝑓(𝑥1, 𝑥2, … ,0) + 𝑥𝑛𝑓(𝑥1, 𝑥2, … ,1) 
 
▪ A short-hand notation of the Shannon expansion is as follows: 
 

𝑓 = 𝑥𝑖̅𝑓𝑥𝑖̅
+ 𝑥𝑖𝑓𝑥𝑖

 

 
 

Note that we can implement 𝑓 using a 2-to-1 MUX, as the equation resembles that of the MUX. 

 
 

 
▪ Examples: 

✓ 𝑓 = 𝑥1𝑥2 + 𝑥1   𝑥3 + 𝑥2𝑥3 
𝑓 = 𝑥1   𝑓(0, 𝑥2, 𝑥3) + 𝑥1𝑓(1, 𝑥2, 𝑥3) = 𝑥1   (𝑥3 + 𝑥2𝑥3) + 𝑥1(𝑥2 + 𝑥2𝑥3) 
 
We can further apply Shannon expansion to two variable functions: 
𝑓 = 𝑥1   𝑔(𝑥2, 𝑥3) + 𝑥1ℎ(𝑥2, 𝑥3) 
𝑔(𝑥2, 𝑥3) = 𝑥2   𝑔(0, 𝑥3) + 𝑥2𝑔(1, 𝑥3) = 𝑥2   (𝑥3) + 𝑥2(𝑥3) 
ℎ(𝑥2, 𝑥3) = 𝑥2   ℎ(0, 𝑥3) + 𝑥2ℎ(1, 𝑥3) = 𝑥2   (0) + 𝑥2(1) 
 
 
 
 
 
 
 

✓ 𝑓 = 𝑧 𝑦 + 𝑧 𝑥 + 𝑥𝑦𝑧 
𝑓 = 𝑥 𝑓(0, 𝑦, 𝑧) + 𝑥𝑓(1, 𝑦, 𝑧) = 𝑥 (𝑧 𝑦) + 𝑥(𝑧 𝑦 + 𝑧 + 𝑦𝑧) 
 
𝑓 = 𝑥 𝑔(𝑦, 𝑧) + 𝑥ℎ(𝑦, 𝑧) 
𝑔(𝑦, 𝑧) = 𝑧 𝑦 = 𝑦 𝑔(0, 𝑧) + 𝑦𝑔(1, 𝑧) = 𝑦 (0) + 𝑦(𝑧 ) 
ℎ(𝑦, 𝑧) = 𝑧 𝑦 + 𝑧 + 𝑦𝑧 = 𝑦 ℎ(0, 𝑧) + 𝑦ℎ(1, 𝑧) = 𝑦 (𝑧 ) + 𝑦(1) 
 
We can implement 𝑧  using MUXs: 

 
𝑝(𝑧) = 𝑧 = 𝑧 𝑝(0) + 𝑧𝑝(1) = 𝑧 (1) + 𝑧(0) 
 
Finally, we implement the function 𝑓 with only 2-to-1 multiplexors: 
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DEMULTIPLEXERS 
▪ A demultiplexer performs the opposite 

operation of the multiplexers. 

 
 
 
 
 
Application: Time Division Multiplexing (TDM) 
 
▪ Digital Telephony: (4 KHz bandwidth) 
▪ 8000 samples per second, 8 bits per sample. This 

requires 64000 bits per second. 
▪ In the figure, there are 4 telephone lines (4 

signals). To take advantage of the communication 
channel, only one signal is transmitted at a time. 
We can do this since we are only required to 
transmit samples of a particular signal at the rate 

of 8000 samples per second (or 125 us between 
samples, this is controlled by counters). 

 
 

 

DECODERS 
▪ Generally speaking, decoders are circuits that transform the inputs into outputs following a certain rule, provided that the 

number of outputs is greater than or equal to the number of inputs. 
▪ Here, we discuss standard decoders for which a specific input/output rule exists. These decoders have 𝑛 inputs and 2𝑛 

outputs. We show examples of: a 2-to-4 decoder, 3-to-8 decoder, and a 2-to-4 decoder with enable. The output 𝑦𝑖 is 

activated when the decimal value of the input 𝑤 is equal to 𝑖. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
LOGIC CIRCUITS WITH DECODERS 

 
▪ Decoders can be used to implement Boolean 

functions. Note that each output is actually a 
minterm. 

 
▪ In the example, minterm 2 is activated when 

xyz=010, here only y2 is 1. Also: y5 is activated 
when xyz=101, y7 is activated when xyz=111. 
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IMPLEMENTING DEMULTIPLEXORS WITH DECODERS 
▪ By utilizing the enable input of a decoder as our input signal, we can effectively 

implement a demultiplexor using a decoder: 

 
 
 

 
 
 
 
 
 
 
 
Application: Memory Decoding 
▪ A 20-bit address line in a processor handles up to 220 = 1 𝑀𝐵 of addresses, each address containing one-byte of 

information. We want to connect four 256KB memory chips to the processor. 

▪ The pink-shaded circuit: i) addresses the memory chips, and ii) enables only one memory chip (via CE: chip enable) when 

the address falls in the corresponding range. Example: if 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 = 0𝑥5𝐹𝐹𝐹𝐹, → only memory chip 2 is enabled (CE=1). 

If 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 = 0𝑥𝐷0123, → only memory chip 4 is enabled. 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

ENCODERS 

▪ Generally speaking, encoders are circuits that transform the inputs into outputs following a certain rule, provided that the 
number of outputs is lower than the number of inputs. 

▪ Here, we discuss standard encoders for which a specific input/output rule exists. These encoders have 2𝑛 inputs and 𝑛 

outputs. The operation is exactly the opposite as in the case of the decoder: whenever an input 𝑤𝑖 is activated, then the 

index 𝑖 appears at the output 𝑦 (in binary form). 

▪ 4 to 2 encoder: 
 
 
 
 
 

 
 
𝑦1 = 𝑤3    𝑤2𝑤1    .𝑤0    + 𝑤3𝑤2    . 𝑤1    . 𝑤0     
𝑦0 = 𝑤3    . 𝑤2    𝑤1𝑤0    + 𝑤3. 𝑤2    . 𝑤1    . 𝑤0     
 

Assumptions: 
If 𝑤3 = 1 → 𝑤2 = 𝑤1 = 𝑤0 = 0 
If 𝑤2 = 1 → 𝑤3 = 𝑤1 = 𝑤0 = 0 

If 𝑤1 = 1 → 𝑤3 = 𝑤2 = 𝑤0 = 0 

If 𝑤0 = 1 → 𝑤3 = 𝑤2 = 𝑤1 = 0 

 
Thus: 

𝑦1 = 𝑤2 +𝑤3 
𝑦0 = 𝑤1 +𝑤3 

 

 
▪ 8 to 3 encoder: 𝑦2 = 𝑤7 + 𝑤6 +𝑤5 + 𝑤4 

𝑦1 = 𝑤7 + 𝑤6 + 𝑤4 + 𝑤3 
𝑦0 = 𝑤7 + 𝑤5 +𝑤3 + 𝑤1 

▪ Issues: 
✓ If two or more inputs are activated, the output 𝑦𝑛−1𝑦𝑛−2 …𝑦0 is undefined. 

✓ If no input is activated, the output 𝑦𝑛−1𝑦𝑛−2 …𝑦0 is undefined. In this case, the result is ambiguous, as the result would 
be the same as if only 𝑤0 = 1, i.e., 𝑦𝑛−1𝑦𝑛−2 …𝑦0 = 00…0. 
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PRIORITY ENCODERS 
 

▪ Standard encoder: we check whether a specific input is activated for the output to have a value. 
▪ What happens when more than one input is activated? A solution is to create an extra output that is activated to indicate 

than an unexpected condition has occurred. 
▪ An interesting alternative is to create a priority 

encoder:  if more than one input is activated, then we 
only pay attention to the input bit of the highest order. 
For example if 𝑤 = 1101, then we only pay attention to 

𝑤(3) = 1, if 𝑤 = 0111, we only pay attention to 𝑤(2) =
1. This results in the following truth table for a 4-to-2 

priority encoder: 
▪ What if no input is activated? Here we run out of output 

bits in 𝑦 to represent this case. Thus, we include an extra output 𝑧 that it is ‘0’ when no input activated, and ‘1’ otherwise. 

 
▪ For the priority encoder 4 to 2, we can get the Boolean functions directly from the truth table as: 

𝑦1 = 𝑤2𝑤3    + 𝑤3 
𝑦0 = 𝑤3     𝑤2    𝑤1 + 𝑤3 𝑧 = 𝑤3     𝑤2     𝑤1     𝑤0                    = 𝑤3 +𝑤2 + 𝑤1 + 𝑤0 

 
We could simplify 𝑦1 and 𝑦0 (Boolean Theorems, K-maps, or Quine-McCluskey algorithm) 

 
▪ Alternatively, we can create the following intermediate signals: 
 

𝑖3 = 𝑤3 𝑖3 = 1 if 𝑤3 = 1 

𝑖2 = 𝑤3    𝑤2 𝑖2 = 1 if 𝑤2 = 1,𝑤3 = 0 

𝑖1 = 𝑤3     𝑤2    𝑤1 𝑖3 = 1 if 𝑤1 = 1,𝑤2 = 𝑤3 = 0 

𝑖0 = 𝑤3     𝑤2     𝑤1    𝑤0 𝑖3 = 1 if 𝑤0 = 1,𝑤1 = 𝑤2 = 𝑤3 = 0 

 
 
Then, notice that 𝑖3 = 1, 𝑖2 = 1, 𝑖1 = 1, 𝑖0 = 1 are exclusive: 

 
If 𝑖3 𝑖2 𝑖1 𝑖0 𝑦1 𝑦0 𝑧 

𝑤3 = 1 1 0 0 0 1 1 1 
𝑤2 = 1,𝑤3 = 0 0 1 0 0 1 0 1 

𝑤1 = 1,𝑤2 = 𝑤3 = 0 0 0 1 0 0 1 1 
𝑤0 = 1,𝑤1 = 𝑤2 = 𝑤3 = 0 0 0 0 1 0 0 1 

𝑤0 = 𝑤1 = 𝑤2 = 𝑤3 = 0 0 0 0 0 0 0 0 
 
Note that the relationship of 𝑖3𝑖2𝑖1𝑖0 to 𝑦1𝑦0 is that of a binary encoder. If 𝑧 = 0, then 𝑦1𝑦0 = 00. 

 
 
 
 
 
 
 
 
 
 

 
 
This procedure can be applied to any priority encoder (e.g.: 8 to 3, 16 to 4). 
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0  0  0

1  1  1

1  0  1

0  1  1

0  0  1
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1 x  x  x

0 1  x  x

0 0  1  x

0  0  0  1

w3

w2

w1

w0

y1

y0

z

ENCODER

𝑤3

𝑤2

𝑤1

𝑤0

𝑖3
𝑖2
𝑖1
𝑖0

𝑦1

𝑦0

𝑧

PRIORITY ENCODER
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a3

b3

a2

b2

a1

b1

a0

b0

A=B

a3

b3

a2

b2

e3

e2

e1

e0

e3

a1

b1

e3

e2

a0

b0

e3

e2

e1

A>B

A<B

AB

AB

A=B

A<B

A>B

COMPARATOR

A

B

4

4

COMPARATORS 
 

UNSIGNED NUMBERS 
▪ For 𝐴 = 𝑎3𝑎2𝑎1𝑎0, 𝐵 = 𝑏3𝑏2𝑏1𝑏0 

 
✓ 𝐴 > 𝐵 when: 

𝑎3 = 1, 𝑏3 = 0 

Or: 𝑎3 = 𝑏3 and 𝑎2 = 1, 𝑏2 = 0 

Or: 𝑎3 = 𝑏3, 𝑎2 = 𝑏2 and 𝑎1 = 1, 𝑏1 = 0 

Or: 𝑎3 = 𝑏3, 𝑎2 = 𝑏2, 𝑎1 = 𝑏1 and 𝑎0 = 1, 𝑏0 = 0 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SIGNED NUMBERS 
▪ If 𝐴 ≥ 0 and 𝐵 ≥ 0, we can use the unsigned comparator. 

▪ If 𝐴 < 0 and 𝐵 < 0, we can also use the unsigned comparator. 

Example: 10002 < 10012 (-8 < -7). The closer the number is to 

zero, the larger the unsigned value is. 
▪ If one number is positive and the other negative: 

Example: 10002 < 01002 (-8 < 4). If we were to use the unsigned 

comparator, we would get 10002 > 01002. So, in this case, we 

need to invert both the A>B and the A<B bit. 

 
▪ Rule: For a 4-bit number in 2’s complement: 

✓ If 𝑎3 = 𝑏3, 𝐴 and 𝐵 have the same sign. Then, we do not need to invert any bit. 

✓ If 𝑎3 ≠ 𝑏3, 𝐴 and 𝐵 have a different sign. Then, we need to invert the A>B and A<B bits of the unsigned comparator. 

 
𝑒3 = 1 when 𝑎3 = 𝑏3.  𝑒3 = 0 when 𝑎3 ≠ 𝑏3. 

Then it follows that: (𝐴 < 𝐵)𝑠𝑖𝑔𝑛𝑒𝑑 = 𝑒3̅(𝐴 < 𝐵)𝑢𝑛𝑠𝑖𝑔𝑛𝑒𝑑 = 𝑒3(𝐴 < 𝐵)𝑢𝑛𝑠𝑖𝑔𝑛𝑒𝑑
                           

(𝐴 > 𝐵)𝑠𝑖𝑔𝑛𝑒𝑑 =  𝑒3(𝐴 > 𝐵)𝑢𝑛𝑠𝑖𝑔𝑛𝑒𝑑
                           

 
ALTERNATIVE APPROACH  

▪ Here, we perform A-B in 2C. If the result is positive (MSB=0), then A  B. If the result is negative (MSB=1), then A < B. We 

use an 2C adder/subtractor unit to implement this operation (R=A-B): 

✓ Signed numbers: we need to sign-extend the inputs to 
consider the worst-case scenario. 

✓ Unsigned numbers: we need to zero-extend the inputs to 
convert the values to 2C arithmetic.  

▪ To determine whether 𝐴 is greater than 𝐵, we use the MSB (𝑅𝑛): 

𝑅𝑛 = {
1 → 𝐴 − 𝐵 < 0
0 → 𝐴 − 𝐵 ≥ 0

 

▪ To determine whether 𝐴 = 𝐵, we compare the 𝑛 + 1 bits of 𝑅 to 

0 (𝑅 = 𝐴 − 𝐵). However, note that (𝐴 − 𝐵) ∈ [−2𝑛 + 1, 2𝑛 − 2]. 
So, the case 𝑅 = −2𝑛 = 10…0 will not occur. Thus, we only need 

to compare the bits 𝑅𝑛−1 to 𝑅0 to 0. 

A=B

A<B

A>B

UNSIGNED

COMPARATOR

A

B

4

4

e3

A=B

A<B

A>B

𝑛

+/- +/-

𝑅 = 𝐴− 𝐵

𝐵

𝑛

𝑛 +1

𝑛

𝑛 +1

1

𝐵𝑛−1

𝐴

𝑛

𝑛 +1

𝐴𝑛−1 𝑅𝑛

𝐴 < 𝐵 𝐴 ≥ 𝐵 𝐴 = 𝐵

...
𝑅𝑛−1 𝑅0...
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CODE CONVERTERS 
 

BCD TO 7-SEGMENT DECODER 
▪ The BCD system is useful as it provides a convenient human-readable format. For example, a keypad usually produces 4-bit 

BCD codes every time a user presses a key. A big challenge is to convert a series of 4-bit BCD codes into its binary 
representation. For example: 0101 1001 0111 = 597 in BCD, but 597 is 1001010101 in binary (unsigned).  

▪ The BCD to 7-segment converter is a decoder because the number of outputs is greater than the number of inputs 
▪ The truth table below assumes that the input and output are high-level. 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
GRAY TO BCD DECODER 
▪ It is a decoder because the number of outputs is equal to the number of inputs. 
▪ The figure shows the truth table for a 4-bit case.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
BINARY TO GRAY DECODER AND GRAY TO BINARY DECODER 

▪ These are decoders because the number of outputs is equal to the number of inputs 

▪ For small input sizes, we can use the truth table method (see Lecture Notes – Unit 4). For large input sizes, the following 

circuits are way more efficient: 
 
 
 
 
 
 
 
 
 

  

b7 b6 b5 b4 b3 b2 b1 b0

g7 g6 g5 g4 g3 g2 g1 g0
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0 0 0 1

0 0 1 1

0 0 1 0

0 1 1 0

0 1 1 1

0 1 0 1

0 1 0 0

1 1 0 0

1 1 0 1

1 1 1 1

1 1 1 0

1 0 1 0

1 0 1 1

1 0 0 1

1 0 0 0

g3g2g1g0 b3b2b1b0

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

X X X X

X X X X

X X X X

X X X X

X X X X

X X X X

a

b

c

d

e
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g 9: 6:
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0  1  1  1
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PARITY GENERATORS AND PARITY CHECKERS 

▪ This is defined in the context of an error detection system with transmission and reception units. 
▪ Data to be transmitted: 𝑋 = 𝑥𝑛−1𝑥𝑛−2 …𝑥1𝑥0 Transmitted stream: 𝑌 = 𝑥𝑛−1𝑥𝑛−2 …𝑥1𝑥0𝑝, p: parity bit 

▪ Parity definition: 
✓ Even Parity: 𝑌 has an even number of 1s → pe=1, 0 otherwise 

✓ Odd Parity: 𝑌 has an odd number of 1s → po=1, 0 otherwise. 

▪ This definition is problematic since p is not known. An alternative definition, based on the actual data X is: 
✓ Even Parity: X has an odd number of 1s → pe = 1, 0 otherwise 

✓ Odd Parity: X has an even number of 1s → po = 1, 0 otherwise. 
▪ Parity Generator: Circuit that generates the parity bit based on the actual data X 
▪ Parity Checker: Circuit that verifies whether the stream Y has the correct parity. 
 
Example: 
▪ For the following error detection system, 𝑋 = 𝑥2𝑥1𝑥0, 𝑛 = 3. The parity generator and checker are always of the same parity:  

✓ Even Parity Generator: It generates the parity bit pe.  
✓ Even Parity Checker: It verifies that the received 

stream Y has even parity. If so, rpe =0, otherwise rpe=1 
(to signal an error) 

✓ Odd Parity Generator: It generates the parity bit po. 
✓ Odd Parity Checker: It verifies that the received stream 

Y has odd parity. If so, rpo=0, otherwise rpo=1 (to signal 
an error)  

𝑝𝑒 = 𝑥2𝑥1𝑥0,   𝑟𝑝𝑒 = 𝑥2𝑥1𝑥0𝑝𝑒 𝑝𝑜 = 𝑥2𝑥1𝑥0
              ,   𝑟𝑝𝑜 = 𝑥2𝑥1𝑥0𝑝𝑜

                    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
▪ In general for 𝑋 = 𝑥𝑛−1𝑥𝑛−2 …𝑥1𝑥0: 𝑝𝑒 = 𝑥𝑛−1𝑥𝑛−2 …𝑥1𝑥0. 𝑝𝑜 = 𝑥𝑛−1𝑥𝑛−2 …𝑥1𝑥0

                           
✓ If the # of 1’s in an n-bit stream is odd, the n-bit input XOR gate will return 1, 0 otherwise. 
✓ If the # of 1’s in an n-bit stream is even, the n-bit input XNOR gate will return 1, 0 otherwise. 

▪ 𝑟𝑝𝑒 = 𝑥𝑛−1𝑥𝑛−2 …𝑥1𝑥0𝑝𝑒. We expect the number of 1s in Y to be even, → an XNOR will detect this. However, we want 

𝑟𝑝𝑒 to be 1 when this does not happen (to signal an error). Hence, we use an 𝑛 + 1-bit input XOR gate. 

▪ 𝑟𝑝𝑜 = 𝑥𝑛−1𝑥𝑛−2 …𝑥1𝑥0𝑝𝑜
                               . We expect the number of 1s in to be odd, → an XOR will detect this. However, we want 𝑟𝑝𝑜  

to be 1 when this does not happen (to signal an error). Hence, we use an 𝑛 + 1-bit input XNOR gate. 
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COMPLEX CIRCUITS 
 

LOOK-UP TABLES (LUTS) 
▪ The LUT contents are hardwired in this circuit. A 4-to-1 LUT can be seen as a ROM with 16 addresses, each address holding 

one bit. It can also be seen as a multiplexor with fixed inputs. 
▪ This is how FPGAs implement logic functions. A 4-to-1 LUT can implement any 4-input logic function. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
LARGER LUTS  
▪ A larger LUT can be generated by building a circuit that allows for more ROM positions. 
▪ Efficient method: A larger LUT can also be built by combining LUTs with multiplexers as 

shown in the figure on the right. We can build a NI-to-1 LUT with this method. 
▪ The figure below shows a case for a LUT 6-to-1 built out of two LUT 5-to-1. Each LUT 5-

to-1 is built out of two LUT 4-to-1. 
▪ We can build a NI-to-NO LUT using NO NI-to-1 LUTs. This can be seen as a ROM with 2𝑁𝐼 

addresses, each address holding 𝑁𝑂 bits. 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
LUT DECOMPOSITION USING SHANNON EXPANSION 
▪ LUT size grows exponentially with the size of the input. For a 𝑛-variable Boolean function, Shannon expansion provides a 

systematic way of implementing that function with LUTs and multiplexors, thereby optimizing resources. 
▪ An 𝑛-variable Boolean function can be 

decomposed into two (𝑛 − 1)-variable 

Boolean functions and a MUX using 
Shannon expansion.  

 
▪ Example: 5-variable function. Instead of 

using a 5-to-1 LUT, we decompose the 
function using Shannon expansion. Then 
we can implement it using a MUX 2-to-1 
and two 4-to-1 LUTs.  
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Example: 
▪ Using 3-to-1 LUTs and 2-to-1 MUXes, implement the following Boolean function (specify the contents of the LUTs): 

𝑓(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) = 𝑥1𝑥2𝑥4   + 𝑥3(𝑥4 + 𝑥5) + 𝑥1    𝑥2   𝑥5 

 

 

𝑓 = 𝑥1   𝑓(0, 𝑥2, 𝑥3, 𝑥4, 𝑥5) + 𝑥1𝑓(1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) = 𝑥1   (𝑥3(𝑥4 + 𝑥5) + 𝑥2𝑥5   ) + 𝑥1(𝑥2𝑥4   + 𝑥3(𝑥4 + 𝑥5)) 

 
✓ 𝑔(𝑥2, 𝑥3, 𝑥4, 𝑥5) = 𝑓(0, 𝑥2, 𝑥3, 𝑥4, 𝑥5) = 𝑥3(𝑥4 + 𝑥5) + 𝑥2   𝑥5 

 

𝑔 = 𝑥2   𝑔(0, 𝑥3, 𝑥4, 𝑥5) + 𝑥2𝑔(1, 𝑥3, 𝑥4, 𝑥5) = 𝑥2   (𝑥3(𝑥4 + 𝑥5) + 𝑥5) + 𝑥2(𝑥3(𝑥4 + 𝑥5)) 

 
Note that: 𝑔(0, 𝑥3, 𝑥4, 𝑥5) = 𝑓(0,0, 𝑥3, 𝑥4, 𝑥5), 𝑔(1, 𝑥3, 𝑥4, 𝑥5) = 𝑓(0,1, 𝑥3, 𝑥4, 𝑥5) 

 
✓ ℎ(𝑥2, 𝑥3, 𝑥4, 𝑥5) = 𝑓(1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) = 𝑥2𝑥4   + 𝑥3(𝑥4 + 𝑥5) 
 

ℎ = 𝑥2   ℎ(0, 𝑥3, 𝑥4, 𝑥5) + 𝑥2ℎ(1, 𝑥3, 𝑥4, 𝑥5) = 𝑥2   (𝑥3(𝑥4 + 𝑥5)) + 𝑥2(𝑥4   + 𝑥3(𝑥4 + 𝑥5)) 

 
Note that: ℎ(0, 𝑥3, 𝑥4, 𝑥5) = 𝑓(1,0, 𝑥3, 𝑥4, 𝑥5), ℎ(1, 𝑥3, 𝑥4, 𝑥5) = 𝑓(1,1, 𝑥3, 𝑥4, 𝑥5) 

 
These four 3-variable functions will be implemented using 3-to-1 LUTs. We are ready to sketch the circuit using 3-to-1 LUTs 
and 2-to-1 MUXes. This is how multi-variable functions are implemented on FPGAs. 
 
In order to get the LUT contents, we can either evaluate every 3-variable function that was generated, or we can just fill up 
the truth table for 𝑓 and identify the LUT contents for each 3-variable function. 
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ℎ(𝑥2, 𝑥3 , 𝑥4 , 𝑥5) = 𝑓 1,𝑥2 , 𝑥3 , 𝑥4 , 𝑥5

𝑔(0,𝑥3 , 𝑥4 , 𝑥5) = 𝑓 0,0,𝑥3 , 𝑥4 , 𝑥5

𝑔(1,𝑥3 , 𝑥4 , 𝑥5) = 𝑓 0,1,𝑥3 , 𝑥4 , 𝑥5

ℎ(0,𝑥3 , 𝑥4 , 𝑥5) = 𝑓 1,0,𝑥3 , 𝑥4 , 𝑥5

ℎ(1,𝑥3 , 𝑥4 , 𝑥5) = 𝑓 1,1,𝑥3 , 𝑥4 , 𝑥5

𝑥3𝑥1 𝑥2 𝑥4 𝑥5 𝑓

0

1

0

1

0

1

0

1

0

1

1

1

1

0

0

0

0

1

1

1

1

0

0

0

1

1

0

0

1

1

0

0
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ARITHMETIC LOGIC UNIT (ALU) 
▪ Two types of operation: Arithmetic and Logic (bit-wise). The sel(3..0) input selects the operation. sel(2..0) selects 

the operation type within a specific unit. The arithmetic unit consist of adders and subtractors, while the Logic Unit consist 
of 8-input logic gates. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BARREL SHIFTER 

▪ Two types of operation: Arithmetic (mode=0, × 2𝑖) and Rotation  (mode=1) 

▪ Truth table for an 8-bit Barrel Shifter:  
result[7..0] (output): It is shifted version of the input data[7..0]. sel[2..0]: number of bits to shift. 

dir: It controls the shifting direction (dir=1: to the right, dir=0: to the left). When shifting to the right in the Arithmetic 

Mode, we use sign extension so as properly account for signed input numbers. 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Function

Transfer 'a'

Increment 'a'

Decrement 'a'

Transfer 'b'

Increment 'b'

Decrement 'b'

Add 'a' and 'b'

Subtract 'b' from 'a'

Complement 'a'

Complement 'b'

AND

OR

NAND

NOR

XOR

XNOR

ARITHMETIC 

UNIT

LOGIC UNIT

a

b

sel

y

sel(3)

8

8

4

8

0

1

sel

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0 

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Operation

y <= a

y <= a + 1

y <= a - 1

y <= b

y <= b + 1

y <= b - 1

y <= a + b

y <= a - b

y <= NOT a

y <= NOT b

y <= a AND b

y <= a OR b

y <= a NAND b

y <= a NOR b

y <= a XOR b

y <= a XNOR b

Unit

A
R
I
T
H
M
E
T
I
C

L
O
G
I
C

0                  1

0                                     1

result[7..0]

abcdefgh

bcdefgh0

cdefgh00

defgh000

efgh0000

fgh00000

gh000000

h0000000

aabcdefg

aaabcdef

aaaabcde

aaaaabcd

aaaaaabc

aaaaaaab

aaaaaaaa

dist[2..0]

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

data[7..0]

abcdefgh

abcdefgh

abcdefgh

abcdefgh

abcdefgh

abcdefgh

abcdefgh

abcdefgh

abcdefgh

abcdefgh

abcdefgh

abcdefgh

abcdefgh

abcdefgh

abcdefgh

dir

X

0

0

0

0

0

0

0

1

1

1

1

1

1

1

mode = 0. ARITHMETIC MODE

result[7..0]

abcdefgh

bcdefgha

cdefghab

defghabc

efghabcd

fghabcde

ghabcdef

habcdefg

habcdefg

ghabcdef

fghabcde

efghabcd

defghabc

cdefghab

bcdefgha

dist[2..0]

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

data[7..0]

abcdefgh

abcdefgh

abcdefgh

abcdefgh

abcdefgh

abcdefgh

abcdefgh

abcdefgh

abcdefgh

abcdefgh

abcdefgh

abcdefgh

abcdefgh

abcdefgh

abcdefgh

dir

X

0

0

0

0

0

0

0

1

1

1

1

1

1

1

mode = 1. ROTATION MODE

data

shifter to

left

0 1 2 3 4 5 6 7

dist
3

shifter to

right

0 1 2 3 4 5 6 7

rotate to

left

0 1 2 3 4 5 6 7

rotate to

right

0 1 2 3 4 5 6 7

dir
0                  1

mode

8

result

8



ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY 
ECE-2700: Digital Logic Design  Fall 2024 

 

 

14 Instructor: Daniel Llamocca 

PRACTICE EXERCISES 
 

1. Implement the following functions using i) decoders and ii) multiplexers: 

✓ 𝐹 = 𝑋 + 𝑌        + 𝑍𝑌 
✓ 𝐹(𝑋, 𝑌, 𝑍) = ∑(𝑚0, 𝑚2, 𝑚6) 
✓ 𝐹(𝑋, 𝑌, 𝑍) = ∏(𝑀2, 𝑀4, 𝑀7) 

✓ 𝐹 = (𝑋 + 𝑌 + 𝑍)(𝑋 + 𝑌 + 𝑍 ) 
✓ 𝐹 = 𝑋𝑌 + 𝑌𝑍 + 𝑋𝑍 
✓ 𝐹 = 𝑋𝑌𝑍 

 
2. Using ONLY 4-to-1 MUXs, implement an 8-to-1 MUX. 
 
3. Implement a 6-to-1 MUX using i) only NAND gates, and ii) only NOR gates. 
 
4. Verify that the following circuit made of out of five 2-to-4 decoders with enable represents a 4-to-16 decoder with enable. 

Tip: Create the truth table. 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5. Using only 2-to-1 MUXs, implement the XOR and XNOR gates. 
  
6. Using only a 4-to-1 MUX, implement the following functions.  

▪ 𝐹(𝑋, 𝑌, 𝑍) = ∑(𝑚1, 𝑚3,𝑚5, 𝑚7). 
▪ 𝐹(𝑋, 𝑌, 𝑍) = ∑(𝑚1, 𝑚3,𝑚5) 

▪ 𝐹(𝑋, 𝑌, 𝑍) = ∑(𝑚3, 𝑚5, 𝑚7). 
▪ 𝐹(𝑋, 𝑌, 𝑍) = ∑(𝑚5, 𝑚7). 

 
7. Complete the following timing diagram: 
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