
ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-2700: Digital Logic Design Fall 2024

1 Instructor: Daniel Llamocca

Unit 5 – Combinational Circuits

BASIC CIRCUITS

MULTIPLEXERS (MUXS)
▪ This logic circuit selects one of many input signals and forwards the selected input to the output line.
▪ Boolean equations for MUX2-to-1, MUX4-to-1, MUX8-to-1:

▪ Normally, a multiplexer has 𝑁 = 2𝑛 inputs, one output, and a selector with 𝑛 bits.

▪ But, if a multiplexer has 𝑁 inputs, where 𝑁 is not a power of 2, the number of bits of the

selector is given by: ⌈𝑙𝑜𝑔2𝑁⌉.

MULTIPLEXERS WITH ENABLE
▪ An enable input provides us with an extra level of control. If the multiplexer is enabled, the circuit just works. If the

multiplexer is not enabled, no input is allowed into the output, and the multiplexer output becomes ‘0’ (if the output is active-
high) or ‘1’ (if the output if active-low).

▪ The enable input can be either active-high or active-low:

0

s

1

2

3

a

b

c

d

2

y

0

1

a

b

y

s

ys a b

0

0

1

1

0

1

0

1

s y

0

1

a

b

y = sa + sb

0

s

1

2

3

a

b

c

d

3

y

4

5

6

7

e

f

g

h

y = s1s0a s1s0b +

s1s0c + s1s0d

y = s2s1s0a + s2s1s0b + s2s1s0c + s2s1s0d +

s2s1s0e + s2s1s0f + s2s1s0g + s2s1s0h

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

0

s

1

N-1

n = log2N

y...

N

i
n
p
u
t
s

...

yE s1 s0

a

b

c

d

0

1 0 0

1 0 1

1 1 0

1 1 1

0 X X

0

s

1

2

3

a

b

c

d

2

y

E

yE s1 s0

a

b

c

d

0

0 0 0

0 0 1

0 1 0

0 1 1

1 X X

0

s

1

2

3

a

b

c

d

2

y

EACTIVE HIGH ENABLE ACTIVE LOW ENABLE

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-2700: Digital Logic Design Fall 2024

2 Instructor: Daniel Llamocca

BUS MULTIPLEXERS

▪ Usually we want input signals to contain more than one bit.

▪ In the figure, each input signal contains ‘m’ bits.

▪ This ‘bus multiplexer’ can be built by ‘m’ multiplexers, each

taking care of only one bit for all the inputs.

▪ We have ‘N’ inputs and therefore the selector has

𝑛 = ⌈𝑙𝑜𝑔2𝑁⌉ bits.

▪ Note that the selector is the same for all the multiplexers.

LOGIC CIRCUITS WITH MUXs
▪ Multiplexers can be used to implement Boolean Functions. The selector can be thought as the input variables, the input bits

are fixed values that are passed onto the output according to the selector.
▪ This multiplexor with fixed inputs implements a logic function. The functionality of this circuit is similar to that of a Look-Up

Table (LUT), which is a ROM-like circuit whose values are obtained by addressing them. FPGAs implement Boolean functions
using LUTs. In the example, a 3-to-1 LUT is an LUT with 3 inputs, i.e., it contains 23 = 8 addresses.

0

s

1

N-1

n = log2N

y...

N

i
n
p
u
t
s

...

m

m

m

m

I(0)

I(1)

I(N-1)

0

1

N-1

ym-1...

...

I(0)m-1

I(1)m-1

I(N-1)m-1

0

1

N-1

ym-2...

...

I(0)m-2

I(1)m-2

I(N-1)m-2

0

s

1

N-1

n = log2N

y0...

...

I(0)0

I(1)0

I(N-1)0

...

n

n

0

1

2

3

4

5

6

7

s = xyz

f

s2 s1 s0

0

0

1

1

0

1

0

1

x y z

function

to be

implemented

3 f

3-to-1

Look-up Table

1

1

0

1



address

"Read-only memory

with 8 positions"

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-2700: Digital Logic Design Fall 2024

3 Instructor: Daniel Llamocca

▪ Note that for a 𝑛-variable function, we need a MUX 2𝑛-to-1 with fixed inputs.

▪ However, it is possible to use a MUX 2𝑛−1-to-1. This might require extra NOT gates and non-fixed inputs.

✓ 𝐹(𝑥, 𝑦, 𝑧) = ∑(𝑚0, 𝑚2, 𝑚4, 𝑚6, 𝑚7).

✓ 𝐹(𝑥, 𝑦, 𝑧) = ∑(𝑚0, 𝑚1, 𝑚3, 𝑚5,𝑚7).

✓ 𝐹(𝑥, 𝑦) = ∑(𝑚0, 𝑚1, 𝑚2)

This process of using multiplexors to implement functions can be performed in a systematic fashion using Shannon’s
expansion theorem. As we will see later for LUTs, this has an important application in the implementation of Boolean
functions on FPGAs.

Example:
▪ Implement a MUX 4-to-1 using MUXes 2to-1.

F

1

1

0

1

0

1

0

1

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

x y z

0

1

2

3

s = yz

2

F
1 0

1

2

3

s = xy

2

F
0

1

2

3

s = xz

2

F1

0

1

𝑧
𝑧
𝑧

𝑥

1

0

1

𝑦

f

1

1

1

0

0 0

0 1

1 0

1 1

x y 1

1

1

0

0

1

2

3

s = xy

2

f 0

1

y

1

𝑥
f

0

1

x

1

f
𝑦

0

1

2

3

s = xy

2

f
a

b

c

d

0

1

y

0

1

0

1

x

fXOR

a

b

c

d

f

a

b

c

d

0 0

0 1

1 0

1 1

x y

Fx y z

0

1

2

3

s = yz

2

F

1

0

1

0

1

2

3

s = xy

2

F

1

𝑧
𝑧
𝑧

𝑥

0

1

2

3

s = xz

2

F

1

0

1

𝑦

𝑧

1

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

1

0

1

0

1

0

1

1

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-2700: Digital Logic Design Fall 2024

4 Instructor: Daniel Llamocca

SHANNON’S EXPANSION

▪ This is useful to express a Boolean function in terms of multiplexers
▪ An 𝑛-variable Boolean function can be decomposed into two (𝑛 − 1)-variable Boolean functions:

𝑓(𝑥1, 𝑥2, … , 𝑥𝑛) = 𝑥1 𝑓(0, 𝑥2, … , 𝑥𝑛) + 𝑥1𝑓(1, 𝑥2, … , 𝑥𝑛)

▪ In the equation, we use the variable 𝑥1 to decompose, but we can use any variable 𝑥𝑖 , 𝑖 = 1: 𝑛. For example, using 𝑥𝑛:

𝑓(𝑥1, 𝑥2, … , 𝑥𝑛) = 𝑥𝑛 𝑓(𝑥1, 𝑥2, … ,0) + 𝑥𝑛𝑓(𝑥1, 𝑥2, … ,1)

▪ A short-hand notation of the Shannon expansion is as follows:

𝑓 = 𝑥𝑖̅𝑓𝑥𝑖̅
+ 𝑥𝑖𝑓𝑥𝑖

Note that we can implement 𝑓 using a 2-to-1 MUX, as the equation resembles that of the MUX.

▪ Examples:

✓ 𝑓 = 𝑥1𝑥2 + 𝑥1 𝑥3 + 𝑥2𝑥3
𝑓 = 𝑥1 𝑓(0, 𝑥2, 𝑥3) + 𝑥1𝑓(1, 𝑥2, 𝑥3) = 𝑥1 (𝑥3 + 𝑥2𝑥3) + 𝑥1(𝑥2 + 𝑥2𝑥3)

We can further apply Shannon expansion to two variable functions:
𝑓 = 𝑥1 𝑔(𝑥2, 𝑥3) + 𝑥1ℎ(𝑥2, 𝑥3)
𝑔(𝑥2, 𝑥3) = 𝑥2 𝑔(0, 𝑥3) + 𝑥2𝑔(1, 𝑥3) = 𝑥2 (𝑥3) + 𝑥2(𝑥3)
ℎ(𝑥2, 𝑥3) = 𝑥2 ℎ(0, 𝑥3) + 𝑥2ℎ(1, 𝑥3) = 𝑥2 (0) + 𝑥2(1)

✓ 𝑓 = 𝑧 𝑦 + 𝑧 𝑥 + 𝑥𝑦𝑧
𝑓 = 𝑥 𝑓(0, 𝑦, 𝑧) + 𝑥𝑓(1, 𝑦, 𝑧) = 𝑥 (𝑧 𝑦) + 𝑥(𝑧 𝑦 + 𝑧 + 𝑦𝑧)

𝑓 = 𝑥 𝑔(𝑦, 𝑧) + 𝑥ℎ(𝑦, 𝑧)
𝑔(𝑦, 𝑧) = 𝑧 𝑦 = 𝑦 𝑔(0, 𝑧) + 𝑦𝑔(1, 𝑧) = 𝑦 (0) + 𝑦(𝑧)
ℎ(𝑦, 𝑧) = 𝑧 𝑦 + 𝑧 + 𝑦𝑧 = 𝑦 ℎ(0, 𝑧) + 𝑦ℎ(1, 𝑧) = 𝑦 (𝑧) + 𝑦(1)

We can implement 𝑧 using MUXs:

𝑝(𝑧) = 𝑧 = 𝑧 𝑝(0) + 𝑧𝑝(1) = 𝑧 (1) + 𝑧(0)

Finally, we implement the function 𝑓 with only 2-to-1 multiplexors:

0

1

0

1

0

1

x1

f

0

1

x3

x3

x2

0

1

0

1

0

1

0

1

x

f

1

0

y

0

1

0

1

0

1

x

f

1

0

y

0

1

z

1

0

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-2700: Digital Logic Design Fall 2024

5 Instructor: Daniel Llamocca

DEMULTIPLEXERS
▪ A demultiplexer performs the opposite

operation of the multiplexers.

Application: Time Division Multiplexing (TDM)

▪ Digital Telephony: (4 KHz bandwidth)
▪ 8000 samples per second, 8 bits per sample. This

requires 64000 bits per second.
▪ In the figure, there are 4 telephone lines (4

signals). To take advantage of the communication
channel, only one signal is transmitted at a time.
We can do this since we are only required to
transmit samples of a particular signal at the rate

of 8000 samples per second (or 125 us between
samples, this is controlled by counters).

DECODERS
▪ Generally speaking, decoders are circuits that transform the inputs into outputs following a certain rule, provided that the

number of outputs is greater than or equal to the number of inputs.
▪ Here, we discuss standard decoders for which a specific input/output rule exists. These decoders have 𝑛 inputs and 2𝑛

outputs. We show examples of: a 2-to-4 decoder, 3-to-8 decoder, and a 2-to-4 decoder with enable. The output 𝑦𝑖 is

activated when the decimal value of the input 𝑤 is equal to 𝑖.

LOGIC CIRCUITS WITH DECODERS

▪ Decoders can be used to implement Boolean

functions. Note that each output is actually a
minterm.

▪ In the example, minterm 2 is activated when

xyz=010, here only y2 is 1. Also: y5 is activated
when xyz=101, y7 is activated when xyz=111.

E

w yn 2n

y7 y6 y5 y4 y3 y2 y1 y0w2 w1 w0

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

DECODER
w y3 8

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0

0 0 0 1 0 0 0 0

0 0 1 0 0 0 0 0

0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0

y3 y2 y1 y0w1 w0

0 0

0 1

1 0

1 1

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

DECODERw y2 4

y3 y2 y1 y0E w1 w0

1 0 0

1 0 1

1 1 0

1 1 1

0 X X

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

0 0 0 0

DECODER

with

enable

w y2 4

DECODER

f

0

0

1

1

0

1

0

1

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

x y z

function

to be

implemented

f

y0
y1
y2
y3
y4
y5
y6
y7

w2

w1

w0

x

y

z

w2 w1 w0

2

0

1

2

3

0

1

2

3

(

(

(

(

(

(

(

(

COUNTER

2

COUNTER

0 1 2 3 0 1 2 3 ...

1/8000 s

s

2

y

0

s

1

a

b

y
a bs

0 y 0

1 0 y

a b c ds1 s0

0 0

0 1

1 0

1 1

y 0 0 0

0 y 0 0

0 0 y 0

0 0 0 y

0

1

2

3

a

b

c

d

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-2700: Digital Logic Design Fall 2024

6 Instructor: Daniel Llamocca

IMPLEMENTING DEMULTIPLEXORS WITH DECODERS
▪ By utilizing the enable input of a decoder as our input signal, we can effectively

implement a demultiplexor using a decoder:

Application: Memory Decoding
▪ A 20-bit address line in a processor handles up to 220 = 1 𝑀𝐵 of addresses, each address containing one-byte of

information. We want to connect four 256KB memory chips to the processor.

▪ The pink-shaded circuit: i) addresses the memory chips, and ii) enables only one memory chip (via CE: chip enable) when

the address falls in the corresponding range. Example: if 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 = 0𝑥5𝐹𝐹𝐹𝐹, → only memory chip 2 is enabled (CE=1).

If 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 = 0𝑥𝐷0123, → only memory chip 4 is enabled.

ENCODERS

▪ Generally speaking, encoders are circuits that transform the inputs into outputs following a certain rule, provided that the
number of outputs is lower than the number of inputs.

▪ Here, we discuss standard encoders for which a specific input/output rule exists. These encoders have 2𝑛 inputs and 𝑛

outputs. The operation is exactly the opposite as in the case of the decoder: whenever an input 𝑤𝑖 is activated, then the

index 𝑖 appears at the output 𝑦 (in binary form).

▪ 4 to 2 encoder:

𝑦1 = 𝑤3 𝑤2𝑤1 .𝑤0 + 𝑤3𝑤2 . 𝑤1 . 𝑤0
𝑦0 = 𝑤3 . 𝑤2 𝑤1𝑤0 + 𝑤3. 𝑤2 . 𝑤1 . 𝑤0

Assumptions:
If 𝑤3 = 1 → 𝑤2 = 𝑤1 = 𝑤0 = 0
If 𝑤2 = 1 → 𝑤3 = 𝑤1 = 𝑤0 = 0

If 𝑤1 = 1 → 𝑤3 = 𝑤2 = 𝑤0 = 0

If 𝑤0 = 1 → 𝑤3 = 𝑤2 = 𝑤1 = 0

Thus:

𝑦1 = 𝑤2 +𝑤3
𝑦0 = 𝑤1 +𝑤3

▪ 8 to 3 encoder: 𝑦2 = 𝑤7 + 𝑤6 +𝑤5 + 𝑤4

𝑦1 = 𝑤7 + 𝑤6 + 𝑤4 + 𝑤3
𝑦0 = 𝑤7 + 𝑤5 +𝑤3 + 𝑤1

▪ Issues:
✓ If two or more inputs are activated, the output 𝑦𝑛−1𝑦𝑛−2 …𝑦0 is undefined.

✓ If no input is activated, the output 𝑦𝑛−1𝑦𝑛−2 …𝑦0 is undefined. In this case, the result is ambiguous, as the result would
be the same as if only 𝑤0 = 1, i.e., 𝑦𝑛−1𝑦𝑛−2 …𝑦0 = 00…0.

0

s

1

2

3

a

b

c

d

2

x

a b c ds1 s0

0 0

0 1

1 0

1 1

x 0 0 0

0 x 0 0

0 0 x 0

0 0 0 x


y0

y1

y2

y3

w1

w0

E

s1

x

s0

y3 y2 y1 y0E w1 w0

1 0 0

1 0 1

1 1 0

1 1 1

0 X X

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

0 0 0 0

y3 y2 y1 y0w1 w0

0 0

0 1

1 0

1 1

0 0 0 E

0 0 E 0

0 E 0 0

E 0 0 0

a

b

c

d

E = x

ENCODER
w yn2n

w3 w2 w1 w0 y1 y0

0 0

0 1

1 0

1 1

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

ENCODER
w y4 2

00000

3FFFF

40000

7FFFF

80000

BFFFF

C0000

FFFFF

...
...

...
...256KB

256KB

256KB

256KB

256 KB

CE

256 KB

CE

256 KB

CE

256 KB

CE

Memory

space

20address

18 18 18 18

Memory

devices

1 2 3 4
1

2

3

4

w0
w1

y0
y1
y2
y3

address(17..0)

address(18)

address(19)

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-2700: Digital Logic Design Fall 2024

7 Instructor: Daniel Llamocca

PRIORITY ENCODERS

▪ Standard encoder: we check whether a specific input is activated for the output to have a value.
▪ What happens when more than one input is activated? A solution is to create an extra output that is activated to indicate

than an unexpected condition has occurred.
▪ An interesting alternative is to create a priority

encoder: if more than one input is activated, then we
only pay attention to the input bit of the highest order.
For example if 𝑤 = 1101, then we only pay attention to

𝑤(3) = 1, if 𝑤 = 0111, we only pay attention to 𝑤(2) =
1. This results in the following truth table for a 4-to-2

priority encoder:
▪ What if no input is activated? Here we run out of output

bits in 𝑦 to represent this case. Thus, we include an extra output 𝑧 that it is ‘0’ when no input activated, and ‘1’ otherwise.

▪ For the priority encoder 4 to 2, we can get the Boolean functions directly from the truth table as:

𝑦1 = 𝑤2𝑤3 + 𝑤3
𝑦0 = 𝑤3 𝑤2 𝑤1 + 𝑤3 𝑧 = 𝑤3 𝑤2 𝑤1 𝑤0 = 𝑤3 +𝑤2 + 𝑤1 + 𝑤0

We could simplify 𝑦1 and 𝑦0 (Boolean Theorems, K-maps, or Quine-McCluskey algorithm)

▪ Alternatively, we can create the following intermediate signals:

𝑖3 = 𝑤3 𝑖3 = 1 if 𝑤3 = 1

𝑖2 = 𝑤3 𝑤2 𝑖2 = 1 if 𝑤2 = 1,𝑤3 = 0

𝑖1 = 𝑤3 𝑤2 𝑤1 𝑖3 = 1 if 𝑤1 = 1,𝑤2 = 𝑤3 = 0

𝑖0 = 𝑤3 𝑤2 𝑤1 𝑤0 𝑖3 = 1 if 𝑤0 = 1,𝑤1 = 𝑤2 = 𝑤3 = 0

Then, notice that 𝑖3 = 1, 𝑖2 = 1, 𝑖1 = 1, 𝑖0 = 1 are exclusive:

If 𝑖3 𝑖2 𝑖1 𝑖0 𝑦1 𝑦0 𝑧

𝑤3 = 1 1 0 0 0 1 1 1
𝑤2 = 1,𝑤3 = 0 0 1 0 0 1 0 1

𝑤1 = 1,𝑤2 = 𝑤3 = 0 0 0 1 0 0 1 1
𝑤0 = 1,𝑤1 = 𝑤2 = 𝑤3 = 0 0 0 0 1 0 0 1

𝑤0 = 𝑤1 = 𝑤2 = 𝑤3 = 0 0 0 0 0 0 0 0

Note that the relationship of 𝑖3𝑖2𝑖1𝑖0 to 𝑦1𝑦0 is that of a binary encoder. If 𝑧 = 0, then 𝑦1𝑦0 = 00.

This procedure can be applied to any priority encoder (e.g.: 8 to 3, 16 to 4).

PRIORITY

ENCODER

w3 w2 w1 w0 y1 y0 z

0 0 0

1 1 1

1 0 1

0 1 1

0 0 1

0 0 0 0

1 x x x

0 1 x x

0 0 1 x

0 0 0 1

w3

w2

w1

w0

y1

y0

z

ENCODER

𝑤3

𝑤2

𝑤1

𝑤0

𝑖3
𝑖2
𝑖1
𝑖0

𝑦1

𝑦0

𝑧

PRIORITY ENCODER

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-2700: Digital Logic Design Fall 2024

8 Instructor: Daniel Llamocca

a3

b3

a2

b2

a1

b1

a0

b0

A=B

a3

b3

a2

b2

e3

e2

e1

e0

e3

a1

b1

e3

e2

a0

b0

e3

e2

e1

A>B

A<B

AB

AB

A=B

A<B

A>B

COMPARATOR

A

B

4

4

COMPARATORS

UNSIGNED NUMBERS
▪ For 𝐴 = 𝑎3𝑎2𝑎1𝑎0, 𝐵 = 𝑏3𝑏2𝑏1𝑏0

✓ 𝐴 > 𝐵 when:

𝑎3 = 1, 𝑏3 = 0

Or: 𝑎3 = 𝑏3 and 𝑎2 = 1, 𝑏2 = 0

Or: 𝑎3 = 𝑏3, 𝑎2 = 𝑏2 and 𝑎1 = 1, 𝑏1 = 0

Or: 𝑎3 = 𝑏3, 𝑎2 = 𝑏2, 𝑎1 = 𝑏1 and 𝑎0 = 1, 𝑏0 = 0

SIGNED NUMBERS
▪ If 𝐴 ≥ 0 and 𝐵 ≥ 0, we can use the unsigned comparator.

▪ If 𝐴 < 0 and 𝐵 < 0, we can also use the unsigned comparator.

Example: 10002 < 10012 (-8 < -7). The closer the number is to

zero, the larger the unsigned value is.
▪ If one number is positive and the other negative:

Example: 10002 < 01002 (-8 < 4). If we were to use the unsigned

comparator, we would get 10002 > 01002. So, in this case, we

need to invert both the A>B and the A<B bit.

▪ Rule: For a 4-bit number in 2’s complement:

✓ If 𝑎3 = 𝑏3, 𝐴 and 𝐵 have the same sign. Then, we do not need to invert any bit.

✓ If 𝑎3 ≠ 𝑏3, 𝐴 and 𝐵 have a different sign. Then, we need to invert the A>B and A<B bits of the unsigned comparator.

𝑒3 = 1 when 𝑎3 = 𝑏3. 𝑒3 = 0 when 𝑎3 ≠ 𝑏3.

Then it follows that: (𝐴 < 𝐵)𝑠𝑖𝑔𝑛𝑒𝑑 = 𝑒3̅(𝐴 < 𝐵)𝑢𝑛𝑠𝑖𝑔𝑛𝑒𝑑 = 𝑒3(𝐴 < 𝐵)𝑢𝑛𝑠𝑖𝑔𝑛𝑒𝑑

(𝐴 > 𝐵)𝑠𝑖𝑔𝑛𝑒𝑑 = 𝑒3(𝐴 > 𝐵)𝑢𝑛𝑠𝑖𝑔𝑛𝑒𝑑

ALTERNATIVE APPROACH

▪ Here, we perform A-B in 2C. If the result is positive (MSB=0), then A  B. If the result is negative (MSB=1), then A < B. We

use an 2C adder/subtractor unit to implement this operation (R=A-B):

✓ Signed numbers: we need to sign-extend the inputs to
consider the worst-case scenario.

✓ Unsigned numbers: we need to zero-extend the inputs to
convert the values to 2C arithmetic.

▪ To determine whether 𝐴 is greater than 𝐵, we use the MSB (𝑅𝑛):

𝑅𝑛 = {
1 → 𝐴 − 𝐵 < 0
0 → 𝐴 − 𝐵 ≥ 0

▪ To determine whether 𝐴 = 𝐵, we compare the 𝑛 + 1 bits of 𝑅 to

0 (𝑅 = 𝐴 − 𝐵). However, note that (𝐴 − 𝐵) ∈ [−2𝑛 + 1, 2𝑛 − 2].
So, the case 𝑅 = −2𝑛 = 10…0 will not occur. Thus, we only need

to compare the bits 𝑅𝑛−1 to 𝑅0 to 0.

A=B

A<B

A>B

UNSIGNED

COMPARATOR

A

B

4

4

e3

A=B

A<B

A>B

𝑛

+/- +/-

𝑅 = 𝐴− 𝐵

𝐵

𝑛

𝑛 +1

𝑛

𝑛 +1

1

𝐵𝑛−1

𝐴

𝑛

𝑛 +1

𝐴𝑛−1 𝑅𝑛

𝐴 < 𝐵 𝐴 ≥ 𝐵 𝐴 = 𝐵

...
𝑅𝑛−1 𝑅0...

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-2700: Digital Logic Design Fall 2024

9 Instructor: Daniel Llamocca

CODE CONVERTERS

BCD TO 7-SEGMENT DECODER
▪ The BCD system is useful as it provides a convenient human-readable format. For example, a keypad usually produces 4-bit

BCD codes every time a user presses a key. A big challenge is to convert a series of 4-bit BCD codes into its binary
representation. For example: 0101 1001 0111 = 597 in BCD, but 597 is 1001010101 in binary (unsigned).

▪ The BCD to 7-segment converter is a decoder because the number of outputs is greater than the number of inputs
▪ The truth table below assumes that the input and output are high-level.

GRAY TO BCD DECODER
▪ It is a decoder because the number of outputs is equal to the number of inputs.
▪ The figure shows the truth table for a 4-bit case.

BINARY TO GRAY DECODER AND GRAY TO BINARY DECODER

▪ These are decoders because the number of outputs is equal to the number of inputs

▪ For small input sizes, we can use the truth table method (see Lecture Notes – Unit 4). For large input sizes, the following

circuits are way more efficient:

b7 b6 b5 b4 b3 b2 b1 b0

g7 g6 g5 g4 g3 g2 g1 g0

0 0 0 0

0 0 0 1

0 0 1 1

0 0 1 0

0 1 1 0

0 1 1 1

0 1 0 1

0 1 0 0

1 1 0 0

1 1 0 1

1 1 1 1

1 1 1 0

1 0 1 0

1 0 1 1

1 0 0 1

1 0 0 0

g3g2g1g0 b3b2b1b0

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

X X X X

X X X X

X X X X

X X X X

X X X X

X X X X

a

b

c

d

e

f
g 9: 6:

4:

b3 b2 b1 b0

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

a b c d e f g

1 1 1 1 1 1 0

0 1 1 0 0 0 0

1 1 0 0 1 0 1

1 1 1 1 0 0 1

0 1 1 0 0 1 1

1 0 1 1 0 1 1

1 0 1 1 1 1 1

1 1 1 0 0 0 0

1 1 1 1 1 1 1

1 1 1 1 0 1 1

X X X X X X X

X X X X X X X

X X X X X X X

X X X X X X X

X X X X X X X

X X X X X X X

7: 2: 1:0:

g0g1g2g3g4g5g6g7

b0b1b2b3b4b5b6b7

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-2700: Digital Logic Design Fall 2024

10 Instructor: Daniel Llamocca

PARITY GENERATORS AND PARITY CHECKERS

▪ This is defined in the context of an error detection system with transmission and reception units.
▪ Data to be transmitted: 𝑋 = 𝑥𝑛−1𝑥𝑛−2 …𝑥1𝑥0 Transmitted stream: 𝑌 = 𝑥𝑛−1𝑥𝑛−2 …𝑥1𝑥0𝑝, p: parity bit

▪ Parity definition:
✓ Even Parity: 𝑌 has an even number of 1s → pe=1, 0 otherwise

✓ Odd Parity: 𝑌 has an odd number of 1s → po=1, 0 otherwise.

▪ This definition is problematic since p is not known. An alternative definition, based on the actual data X is:
✓ Even Parity: X has an odd number of 1s → pe = 1, 0 otherwise

✓ Odd Parity: X has an even number of 1s → po = 1, 0 otherwise.
▪ Parity Generator: Circuit that generates the parity bit based on the actual data X
▪ Parity Checker: Circuit that verifies whether the stream Y has the correct parity.

Example:
▪ For the following error detection system, 𝑋 = 𝑥2𝑥1𝑥0, 𝑛 = 3. The parity generator and checker are always of the same parity:

✓ Even Parity Generator: It generates the parity bit pe.
✓ Even Parity Checker: It verifies that the received

stream Y has even parity. If so, rpe =0, otherwise rpe=1
(to signal an error)

✓ Odd Parity Generator: It generates the parity bit po.
✓ Odd Parity Checker: It verifies that the received stream

Y has odd parity. If so, rpo=0, otherwise rpo=1 (to signal
an error)

𝑝𝑒 = 𝑥2𝑥1𝑥0, 𝑟𝑝𝑒 = 𝑥2𝑥1𝑥0𝑝𝑒 𝑝𝑜 = 𝑥2𝑥1𝑥0
 , 𝑟𝑝𝑜 = 𝑥2𝑥1𝑥0𝑝𝑜

▪ In general for 𝑋 = 𝑥𝑛−1𝑥𝑛−2 …𝑥1𝑥0: 𝑝𝑒 = 𝑥𝑛−1𝑥𝑛−2 …𝑥1𝑥0. 𝑝𝑜 = 𝑥𝑛−1𝑥𝑛−2 …𝑥1𝑥0

✓ If the # of 1’s in an n-bit stream is odd, the n-bit input XOR gate will return 1, 0 otherwise.
✓ If the # of 1’s in an n-bit stream is even, the n-bit input XNOR gate will return 1, 0 otherwise.

▪ 𝑟𝑝𝑒 = 𝑥𝑛−1𝑥𝑛−2 …𝑥1𝑥0𝑝𝑒. We expect the number of 1s in Y to be even, → an XNOR will detect this. However, we want

𝑟𝑝𝑒 to be 1 when this does not happen (to signal an error). Hence, we use an 𝑛 + 1-bit input XOR gate.

▪ 𝑟𝑝𝑜 = 𝑥𝑛−1𝑥𝑛−2 …𝑥1𝑥0𝑝𝑜
 . We expect the number of 1s in to be odd, → an XOR will detect this. However, we want 𝑟𝑝𝑜

to be 1 when this does not happen (to signal an error). Hence, we use an 𝑛 + 1-bit input XNOR gate.

Even/Odd

Parity

Generator

Even/Odd

Parity

Checker

x2
x1
x0

rpopo

Transmitted bits

0

1

1

0

1

0

0

1

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

0

1

1

0

1

0

0

1

1

0

0

1

0

1

1

0

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Even Parity

Generator

Even Parity

Checker

x2
x1
x0

pe
rpe

pe

rpe

x2
x1
x0

x2
x1
x0
po

x2 x1 x0 x2 x1 x0 pepe rpe

1

0

0

1

0

1

1

0

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

1

0

0

1

0

1

1

0

0

1

1

0

1

0

0

1

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Odd Parity

Generator

Odd Parity

Checker

po

rpo

x2
x1
x0

x2
x1
x0
po

x2 x1 x0 x2 x1 x0 popo rpo

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-2700: Digital Logic Design Fall 2024

11 Instructor: Daniel Llamocca

COMPLEX CIRCUITS

LOOK-UP TABLES (LUTS)
▪ The LUT contents are hardwired in this circuit. A 4-to-1 LUT can be seen as a ROM with 16 addresses, each address holding

one bit. It can also be seen as a multiplexor with fixed inputs.
▪ This is how FPGAs implement logic functions. A 4-to-1 LUT can implement any 4-input logic function.

LARGER LUTS
▪ A larger LUT can be generated by building a circuit that allows for more ROM positions.
▪ Efficient method: A larger LUT can also be built by combining LUTs with multiplexers as

shown in the figure on the right. We can build a NI-to-1 LUT with this method.
▪ The figure below shows a case for a LUT 6-to-1 built out of two LUT 5-to-1. Each LUT 5-

to-1 is built out of two LUT 4-to-1.
▪ We can build a NI-to-NO LUT using NO NI-to-1 LUTs. This can be seen as a ROM with 2𝑁𝐼

addresses, each address holding 𝑁𝑂 bits.

LUT DECOMPOSITION USING SHANNON EXPANSION
▪ LUT size grows exponentially with the size of the input. For a 𝑛-variable Boolean function, Shannon expansion provides a

systematic way of implementing that function with LUTs and multiplexors, thereby optimizing resources.
▪ An 𝑛-variable Boolean function can be

decomposed into two (𝑛 − 1)-variable

Boolean functions and a MUX using
Shannon expansion.

▪ Example: 5-variable function. Instead of

using a 5-to-1 LUT, we decompose the
function using Shannon expansion. Then
we can implement it using a MUX 2-to-1
and two 4-to-1 LUTs.

OLUT

ILUT

4

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

data(0)

data(1)

data(2)

data(3)

data(4)

data(5)

data(6)

data(7)

data(8)

data(9)

data(10)

data(11)

data(12)

data(13)

data(14)

data(15)

LUT
4 to 1

ILUT(3)

ILUT(2)

ILUT(1)

ILUT(0)

OLUT ILUT
4 OLUT

4-to-1

Look-up Table

address

(Read-only memory

with 16 positions)

data(0)

data(1)

data(2)

data(3)

data(4)

data(5)

data(6)

data(7)

data(8)

data(9)

data(10)

data(11)

data(12)

data(13)

data(14)

data(15)

6

4 4 4 4

2
 M

S
B

s

4 LSBs

LUT5-to-1

LUT6-to-1

LUT
6 to 1

LUT
6 to 1

LUT
6 to 1

6

6

6

6

b0

b4

b5

b5 b1 b0



6

LUT 6-to-6

6 bits

6
4
 w

o
rd

s
 o

f
6
 b

it
s

LUT 6-to-6

LU
T

4

LU
T

4

LU
T

4

LU
T

4

MUX MUX

MUX

...

...

...

I
L
U
T

ILUT(4)

ILUT(5)

ILUT(3..0)
c
o
lu

m
n
 5

c
o
lu

m
n
 1

c
o
lu

m
n
 0 66

OLUT(i)

LUT
NI1 to 1

LUT
NI1 to 1

NI-1NI

LUT NI-to-1

0

1

0

1

LUT
4 to 1

𝑓 𝑥1 , 𝑥2,, 𝑥3 , 𝑥4 , 𝑥5

𝑔 𝑥2,, 𝑥3 , 𝑥4 , 𝑥5 = 𝑓 0, 𝑥2,, 𝑥3 , 𝑥4 , 𝑥5

ℎ 𝑥2,, 𝑥3 , 𝑥4 , 𝑥5 = 𝑓 1,𝑥2,, 𝑥3 , 𝑥4 , 𝑥5

𝑥2
𝑥3
𝑥4
𝑥5

LUT
4 to 1

𝑥2
𝑥3
𝑥4
𝑥5

𝑥1

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-2700: Digital Logic Design Fall 2024

12 Instructor: Daniel Llamocca

Example:
▪ Using 3-to-1 LUTs and 2-to-1 MUXes, implement the following Boolean function (specify the contents of the LUTs):

𝑓(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) = 𝑥1𝑥2𝑥4 + 𝑥3(𝑥4 + 𝑥5) + 𝑥1 𝑥2 𝑥5

𝑓 = 𝑥1 𝑓(0, 𝑥2, 𝑥3, 𝑥4, 𝑥5) + 𝑥1𝑓(1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) = 𝑥1 (𝑥3(𝑥4 + 𝑥5) + 𝑥2𝑥5) + 𝑥1(𝑥2𝑥4 + 𝑥3(𝑥4 + 𝑥5))

✓ 𝑔(𝑥2, 𝑥3, 𝑥4, 𝑥5) = 𝑓(0, 𝑥2, 𝑥3, 𝑥4, 𝑥5) = 𝑥3(𝑥4 + 𝑥5) + 𝑥2 𝑥5

𝑔 = 𝑥2 𝑔(0, 𝑥3, 𝑥4, 𝑥5) + 𝑥2𝑔(1, 𝑥3, 𝑥4, 𝑥5) = 𝑥2 (𝑥3(𝑥4 + 𝑥5) + 𝑥5) + 𝑥2(𝑥3(𝑥4 + 𝑥5))

Note that: 𝑔(0, 𝑥3, 𝑥4, 𝑥5) = 𝑓(0,0, 𝑥3, 𝑥4, 𝑥5), 𝑔(1, 𝑥3, 𝑥4, 𝑥5) = 𝑓(0,1, 𝑥3, 𝑥4, 𝑥5)

✓ ℎ(𝑥2, 𝑥3, 𝑥4, 𝑥5) = 𝑓(1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) = 𝑥2𝑥4 + 𝑥3(𝑥4 + 𝑥5)

ℎ = 𝑥2 ℎ(0, 𝑥3, 𝑥4, 𝑥5) + 𝑥2ℎ(1, 𝑥3, 𝑥4, 𝑥5) = 𝑥2 (𝑥3(𝑥4 + 𝑥5)) + 𝑥2(𝑥4 + 𝑥3(𝑥4 + 𝑥5))

Note that: ℎ(0, 𝑥3, 𝑥4, 𝑥5) = 𝑓(1,0, 𝑥3, 𝑥4, 𝑥5), ℎ(1, 𝑥3, 𝑥4, 𝑥5) = 𝑓(1,1, 𝑥3, 𝑥4, 𝑥5)

These four 3-variable functions will be implemented using 3-to-1 LUTs. We are ready to sketch the circuit using 3-to-1 LUTs
and 2-to-1 MUXes. This is how multi-variable functions are implemented on FPGAs.

In order to get the LUT contents, we can either evaluate every 3-variable function that was generated, or we can just fill up
the truth table for 𝑓 and identify the LUT contents for each 3-variable function.

0 0 0 0 0

0 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 1 0 0

0 0 1 0 1

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 0

0 1 1 1 1

1 0 0 0 0

1 0 0 0 1

1 0 0 1 0

1 0 0 1 1

1 0 1 0 0

1 0 1 0 1

1 0 1 1 0

1 0 1 1 1

1 1 0 0 0

1 1 0 0 1

1 1 0 1 0

1 1 0 1 1

1 1 1 0 0

1 1 1 0 1

1 1 1 1 0

1 1 1 1 1

0

1

LUT
3 to 1

𝑓 𝑥1, 𝑥2 , 𝑥3 , 𝑥4 , 𝑥5

LUT
3 to 1

0

1

0

1

0

1

0

1

0

1

1

1

1

0

0

0

0

1

LUT
3 to 1

LUT
3 to 1

𝑥2

0

1

1

1

1

0

0

0

1

1

0

0

1

1

0

0

0

1

𝑥1

𝑥3
𝑥4
𝑥5

𝑥3
𝑥4
𝑥5

𝑥3
𝑥4
𝑥5

𝑥3
𝑥4
𝑥5

𝑔(𝑥2 , 𝑥3 , 𝑥4 , 𝑥5) = 𝑓 0,𝑥2 , 𝑥3 , 𝑥4 , 𝑥5

ℎ(𝑥2, 𝑥3 , 𝑥4 , 𝑥5) = 𝑓 1,𝑥2 , 𝑥3 , 𝑥4 , 𝑥5

𝑔(0,𝑥3 , 𝑥4 , 𝑥5) = 𝑓 0,0,𝑥3 , 𝑥4 , 𝑥5

𝑔(1,𝑥3 , 𝑥4 , 𝑥5) = 𝑓 0,1,𝑥3 , 𝑥4 , 𝑥5

ℎ(0,𝑥3 , 𝑥4 , 𝑥5) = 𝑓 1,0,𝑥3 , 𝑥4 , 𝑥5

ℎ(1,𝑥3 , 𝑥4 , 𝑥5) = 𝑓 1,1,𝑥3 , 𝑥4 , 𝑥5

𝑥3𝑥1 𝑥2 𝑥4 𝑥5 𝑓

0

1

0

1

0

1

0

1

0

1

1

1

1

0

0

0

0

1

1

1

1

0

0

0

1

1

0

0

1

1

0

0

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-2700: Digital Logic Design Fall 2024

13 Instructor: Daniel Llamocca

ARITHMETIC LOGIC UNIT (ALU)
▪ Two types of operation: Arithmetic and Logic (bit-wise). The sel(3..0) input selects the operation. sel(2..0) selects

the operation type within a specific unit. The arithmetic unit consist of adders and subtractors, while the Logic Unit consist
of 8-input logic gates.

BARREL SHIFTER

▪ Two types of operation: Arithmetic (mode=0, × 2𝑖) and Rotation (mode=1)

▪ Truth table for an 8-bit Barrel Shifter:
result[7..0] (output): It is shifted version of the input data[7..0]. sel[2..0]: number of bits to shift.

dir: It controls the shifting direction (dir=1: to the right, dir=0: to the left). When shifting to the right in the Arithmetic

Mode, we use sign extension so as properly account for signed input numbers.

Function

Transfer 'a'

Increment 'a'

Decrement 'a'

Transfer 'b'

Increment 'b'

Decrement 'b'

Add 'a' and 'b'

Subtract 'b' from 'a'

Complement 'a'

Complement 'b'

AND

OR

NAND

NOR

XOR

XNOR

ARITHMETIC

UNIT

LOGIC UNIT

a

b

sel

y

sel(3)

8

8

4

8

0

1

sel

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Operation

y <= a

y <= a + 1

y <= a - 1

y <= b

y <= b + 1

y <= b - 1

y <= a + b

y <= a - b

y <= NOT a

y <= NOT b

y <= a AND b

y <= a OR b

y <= a NAND b

y <= a NOR b

y <= a XOR b

y <= a XNOR b

Unit

A
R
I
T
H
M
E
T
I
C

L
O
G
I
C

0 1

0 1

result[7..0]

abcdefgh

bcdefgh0

cdefgh00

defgh000

efgh0000

fgh00000

gh000000

h0000000

aabcdefg

aaabcdef

aaaabcde

aaaaabcd

aaaaaabc

aaaaaaab

aaaaaaaa

dist[2..0]

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

data[7..0]

abcdefgh

abcdefgh

abcdefgh

abcdefgh

abcdefgh

abcdefgh

abcdefgh

abcdefgh

abcdefgh

abcdefgh

abcdefgh

abcdefgh

abcdefgh

abcdefgh

abcdefgh

dir

X

0

0

0

0

0

0

0

1

1

1

1

1

1

1

mode = 0. ARITHMETIC MODE

result[7..0]

abcdefgh

bcdefgha

cdefghab

defghabc

efghabcd

fghabcde

ghabcdef

habcdefg

habcdefg

ghabcdef

fghabcde

efghabcd

defghabc

cdefghab

bcdefgha

dist[2..0]

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

data[7..0]

abcdefgh

abcdefgh

abcdefgh

abcdefgh

abcdefgh

abcdefgh

abcdefgh

abcdefgh

abcdefgh

abcdefgh

abcdefgh

abcdefgh

abcdefgh

abcdefgh

abcdefgh

dir

X

0

0

0

0

0

0

0

1

1

1

1

1

1

1

mode = 1. ROTATION MODE

data

shifter to

left

0 1 2 3 4 5 6 7

dist
3

shifter to

right

0 1 2 3 4 5 6 7

rotate to

left

0 1 2 3 4 5 6 7

rotate to

right

0 1 2 3 4 5 6 7

dir
0 1

mode

8

result

8

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-2700: Digital Logic Design Fall 2024

14 Instructor: Daniel Llamocca

PRACTICE EXERCISES

1. Implement the following functions using i) decoders and ii) multiplexers:

✓ 𝐹 = 𝑋 + 𝑌 + 𝑍𝑌
✓ 𝐹(𝑋, 𝑌, 𝑍) = ∑(𝑚0, 𝑚2, 𝑚6)
✓ 𝐹(𝑋, 𝑌, 𝑍) = ∏(𝑀2, 𝑀4, 𝑀7)

✓ 𝐹 = (𝑋 + 𝑌 + 𝑍)(𝑋 + 𝑌 + 𝑍)
✓ 𝐹 = 𝑋𝑌 + 𝑌𝑍 + 𝑋𝑍
✓ 𝐹 = 𝑋𝑌𝑍

2. Using ONLY 4-to-1 MUXs, implement an 8-to-1 MUX.

3. Implement a 6-to-1 MUX using i) only NAND gates, and ii) only NOR gates.

4. Verify that the following circuit made of out of five 2-to-4 decoders with enable represents a 4-to-16 decoder with enable.

Tip: Create the truth table.

5. Using only 2-to-1 MUXs, implement the XOR and XNOR gates.

6. Using only a 4-to-1 MUX, implement the following functions.

▪ 𝐹(𝑋, 𝑌, 𝑍) = ∑(𝑚1, 𝑚3,𝑚5, 𝑚7).
▪ 𝐹(𝑋, 𝑌, 𝑍) = ∑(𝑚1, 𝑚3,𝑚5)

▪ 𝐹(𝑋, 𝑌, 𝑍) = ∑(𝑚3, 𝑚5, 𝑚7).
▪ 𝐹(𝑋, 𝑌, 𝑍) = ∑(𝑚5, 𝑚7).

7. Complete the following timing diagram:

y

P3

f

w

E

P2

P1

P0

10 11 01 01 11 01 00 10
3

2

1

0

DECODER

w

E

y3

2

PRIORITY
ENCODER

P3
x1

x0
P2

P1
z

y2

y1

y0

s1 s0

P0
f

Unknown

w2

E

w3

w0

w1

E

w0

w1

E

w0

w1

w0

w1

E

w0

w1

E

w0

w1

E

y0

y1

y2

y3

y4

y5

y6

y7

y8

y9

y10

y11

y12

y13

y14

y15

y0

y1

y2

y3

y0

y1

y2

y3

y0

y1

y2

y3

y0

y1

y2

y3

y0

y1

y2

y3

	Basic Circuits
	Multiplexers (MUXs)
	Shannon’s Expansion
	Demultiplexers
	Decoders
	Encoders
	Priority Encoders
	Comparators
	Code Converters
	Parity Generators and Parity Checkers

	Complex Circuits
	Look-Up Tables (LUTs)
	Arithmetic Logic Unit (ALU)
	Barrel Shifter

	Practice exercises

